The distinct functions of the GAD65 and GAD67 isoforms

The inhibitory neurotransmitter γ-amino butyric acid (GABA) is synthesized by two isoforms of the enzyme glutamic acid decarboxylase (GAD): GAD65 and GAD67. Whereas GAD67 is constitutively active and produces >90% of GABA in the central nervous system, GAD65 is transiently activated and augments GABA levels for rapid modulation of inhibitory neurotransmission.

Hydrophobic lipid modifications of the GAD65 protein target it to Golgi membranes and synaptic vesicles in neuroendocrine cells. In contrast, the GAD67 protein remains hydrophilic but has been shown to acquire membrane association by heterodimerization with GAD65.

Here, we identify a second mechanism that mediates robust membrane anchoring, axonal targeting, and presynaptic clustering of GAD67 but that is independent of GAD65. This mechanism is abolished by a leucine-103 to proline mutation that changes the conformation of the N-terminal domain but does not affect the GAD65-dependent membrane anchoring of GAD67.

Thus two distinct mechanisms target the constitutively active GAD67 to presynaptic clusters to facilitate accumulation of GABA for rapid delivery into synapses.

http://jcb.rupress.org/content/190/5/911.full

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s